Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.15.484018

ABSTRACT

COVID-19 continues to exact a toll on human health despite the availability of several vaccines. Bacillus Calmette Guerin (BCG) has been shown to confer heterologous immune protection against viral infections including COVID-19 and has been proposed as vaccine against SARS-CoV-2 (SCV2). Here we tested intravenous BCG vaccination against COVID-19 using the golden Syrian hamster model together with immune profiling and single cell RNA sequencing (scRNAseq). We observed that BCG reduced both lung SCV2 viral load and bronchopneumonia. This was accompanied by an increase in lung alveolar macrophages, a reversal of SCV2-mediated T cell lymphopenia, and reduced lung granulocytes. Single cell transcriptome profiling showed that BCG uniquely recruits immunoglobulin-producing plasma cells to the lung suggesting accelerated antibody production. BCG vaccination also recruited elevated levels of Th1, Th17, Treg, CTLs, and Tmem cells, and differentially expressed gene (DEG) analysis showed a transcriptional shift away from exhaustion markers and towards antigen presentation and repair. Similarly, BCG enhanced lung recruitment of alveolar macrophages and reduced key interstitial macrophage subsets, with both cell-types also showing reduced IFN-associated gene expression. Our observations indicate that BCG vaccination protects against SCV2 immunopathology by promoting early lung immunoglobulin production and immunotolerizing transcriptional patterns among key myeloid and lymphoid populations.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , Bronchopneumonia , Pneumonia , Severe Acute Respiratory Syndrome , COVID-19 , Lymphopenia
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.25.437060

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), has incited a global health crisis. Currently, there are no orally available medications for prophylaxis for those exposed to SARS-CoV-2 and limited therapeutic options for those who develop COVID-19. We evaluated the antiviral activity of sulforaphane (SFN), a naturally occurring, orally available, well-tolerated, nutritional supplement present in high concentrations in cruciferous vegetables with limited side effects. SFN inhibited in vitro replication of four strains of SARS-CoV-2 as well as that of the seasonal coronavirus HCoV-OC43. Further, SFN and remdesivir interacted synergistically to inhibit coronavirus infection in vitro. Prophylactic administration of SFN to K18-hACE2 mice prior to intranasal SARS-CoV-2 infection significantly decreased the viral load in the lungs and upper respiratory tract and reduced lung injury and pulmonary pathology compared to untreated infected mice. SFN treatment diminished immune cell activation in the lungs, including significantly lower recruitment of myeloid cells and a reduction in T cell activation and cytokine production. Our results suggest that SFN is a promising treatment for prevention of coronavirus infection or treatment of early disease.


Subject(s)
Coronavirus Infections , Lung Diseases , Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL